Logic seminar
Proof complexity of natural formulas via communication arguments
First, we demonstrate our approach for two-party communication and prove an exponential lower bound on the size of tree-like Res(+) refutations of the Perfect matching principle. Then we apply our approach to k-party communication complexity in the NOF model and obtain a lower bound on the randomized k-party communication complexity of Search(BPHP) w.r.t. to some natural partition of the variables, where BPHP is the bit pigeonhole principle. In particular, this lower bound implies that the bit pigeonhole requires exponential tree-like Th(k) proofs, where Th(k) is the semantic proof system operating with polynomial inequalities of degree at most k.
The talk is based on the joint work with Artur Riazanov that is available as ECCC report https://eccc.weizmann.ac.il/report/2020/184/.