Flows in curved pipes are very challenging and considerably more complex than flows in straight pipes. Due to fluid inertia, a secondary motion appears in addition to the primary axial flow. It is induced by an imbalance between the cross stream pressure gradient and the centrifugal force and consists of a pair of counter-rotating vortices, which appear even for the most mildly curved pipe.
Parallel to the pipe curvature ratio, the rheological parameters of the fluid have a considerable influence on the flow behavior. In this work, numerical simulations obtained by finite elements method, involving steady, incompressible, creeping and inertial flows of the generalized Oldroyd-B fluid through curved pipes are presented. The behavior of the solutions is discussed with respect to different rheologic and geometric flow parameters.