Logic seminar
Depth lower bounds in Stabbing Planes for combinatorial principles
The technique known so far to prove depth lower bounds for Stabbing Planes is a generalization of that used for the Cutting Planes proof system. In this work we introduce two new approaches to prove length/depth lower bounds in Stabbing Planes: one relying on Sperner's Theorem which works for the Pigeonhole principle and Tseitin contradictions over the complete graph; a second proving the lower bound for Tseitin contradictions over a grid graph, which uses a result on essential coverings of the boolean cube by linear polynomials, which in turn relies on Alon's combinatorial Nullenstellensatz.
(Joint work with Stefan Dantchev, Nicola Galesi and Abdul Ghani.)