We present a condition under which a differential operator on a two dimensional manifold admits a so-called separated solution and the separation is non-trivial in a sense, that we explain. Along the way we "develop" definitions in order to make these propositions precise, such as of a symmetry generating an operator and of a function that does not depend on a set of variables with respect to a coordinate chart.
We are motivated by problems in Physics, where the separation of variables is often used, e.g., in specific problems of electromagnetic waves, quantum mechanics (hydrogen atom), or in general relativity. In mathematical Physics the notion of separation was studied in many works, including the works of Kalnins, Winternitz, Miller and Koornwinder. In a part of the Physics literature, the notion of the separation is studied without giving a definition of a separated solution.
In... more